МТК 10 лет

Новости

Все новости


Подписаться

Популярное


Нам доверяют

Партнеры

Обновление руководства по оценке последствий аварийных взрывов ТВС

05.04.2023

Не так давно Ростехнадзор обновил Руководство по безопасности «Методика оценки последствий аварийных взрывов топливно-воздушных смесей». Новый документ утвержден приказом Ростехнадзора от 28 ноября 2022 №412.

Одновременно с этим утратил силу приказ № 137 от 31.03.2016, ранее утвердивший аналогичное Руководство. Решили разобраться, что изменилось.

Надо отметить, что приведенные в руководстве рекомендации не являются нормативным правовым актом, поэтому организации могут применять другие обоснованные методы оценки последствий аварийных взрывов ТВС.

Руководство содержит рекомендации по определению вероятных степеней поражения людей и степени повреждений зданий от взрывной нагрузки при авариях со взрывами облаков топливно-воздушных смесей на опасных производственных объектах.

Рассмотрим подробнее все изменения Руководства.

Незначительно изменился 1 пункт. В старой версии Руководства упоминаются правила и нормы  в области промышленной безопасности «Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств»,  утвержденные приказом Ростехнадзора в 2013 году, в новой версии аналогичные  правила и нормы, утвержденные в 2020 году.
 
Пункт 3 дополнен уточнением по поводу методов, используемых при осуществлении оценки последствий аварий со взрывом ТВС:

«Организации, осуществляющие оценку последствий аварий со взрывом топливно-воздушных смесей на опасных производственных объектах, могут использовать иные обоснованные способы и методы, чем те, которые указаны в Руководстве. В частности, подтвержденные практикой достоверные методы вычислительной газодинамики, в том числе методы моделирования горения и детонации, а также распространения волн давления в трехмерной постановке».
 
Незначительно скорректирован 5 пункт Руководства, в котором упоминаются факторы, которые нужно учитывать при  количественной оценке параметров воздушных ударных волн при взрывах ТВС:
 
Было Стало
5. Для количественной оценки параметров воздушных ударных волн при взрывах ТВС рекомендуется рассматривать частичную разгерметизацию и полное разрушение оборудования, содержащего горючее вещество в газообразной или жидкой фазе, выброс этого вещества в окружающую среду, образование облака ТВС, инициирование ТВС, взрывное превращение (горение или детонация) в облаке ТВС. 5. Для количественной оценки параметров воздушных ударных волн при взрывах ТВС рекомендуется рассматривать частичную разгерметизацию и полное разрушение оборудования, содержащего горючее вещество в газообразной или жидкой фазе, выброс этого вещества в окружающую среду, образование и дрейф облаков ТВС, формирование капельных включений в облако, инициирование ТВС, взрывное превращение (горение или детонация) в облаках ТВС, распространение воздушных волн в окружающем пространстве.
 
В Руководстве появились новые пункты, которые содержат общие рекомендации по оценке последствий взрывов ТВС:

Пункт 6. Параметры выброса горючего вещества в окружающую среду определяются с учетом специфики аварийного оборудования на основе методик, изложенных в руководствах по безопасности Ростехнадзора.

Пункт 7. Характеристики образования и пространственно-временные поля концентрации горючих веществ при дрейфе облаков ТВС определяются с использованием методик, изложенных в Руководстве по безопасности «Методика моделирования распространения аварийных выбросов опасных веществ», утвержденном приказом Ростехнадзора от 2 ноября 2022 г. N 385, Руководстве по безопасности «Методика оценки последствий аварий на взрывопожароопасных химических производствах», утвержденном приказом Ростехнадзора от 28 ноября 2022 г. N 415.

В результате моделирования определяется зона возможного воспламенения облаков ТВС как область с концентрацией горючего не менее нижнего концентрационного предела распространения пламени (далее - НКПР), а зона появления открытого пламени - как область с концентрацией не менее 0,5 * НКПР.
 
Пункт 8. Моделирование процессов инициирования облака ТВС, взрывного превращения (горение или детонация) в облаке ТВС, распространения воздушных волн в окружающем пространстве рекомендуется выполнять с использованием следующих подходов:

A. Численное моделирование с использованием методов вычислительной гидродинамики согласно рекомендациям Руководства по безопасности «Методика оценки последствий аварий на взрывопожароопасных химических производствах» в трехмерной постановке;

B. Параметрические модели взрыва ТВС (раздел III);

C. Одномерные газодинамические модели взрыва ТВС (раздел IV).
 
Пункт 9. В качестве исходных данных для выполнения расчета с использованием методов вычислительной гидродинамики в трехмерной постановке выступают: трехмерная модель окружающего пространства, параметры механического движения ТВС (в частности уровень турбулентности), пространственно-временные поля концентраций горючего, определенные на стадии моделирования образования и дрейфа облаков ТВС, параметры источников зажигания облака (облаков) ТВС.
 
Пункт 11. При моделировании сгорания облаков ТВС, целиком находящихся в слабо загроможденном пространстве (вид 4), допускается рассматривать последствия в следующем порядке:
 
- смертельное поражение людей на открытом пространстве от воздействия волны давления не рассматривается;

- в качестве основного смертельного поражающего фактора для людей на открытом пространстве рассматривается тепловое воздействие в результате горения облаков ТВС;

- при этом несмертельное поражение людей на открытом пространстве от воздействия волны давления учитывается в спектре рассматриваемых уровней поражения;

- для учета взрывоустойчивости зданий и сооружений рассматривается барическое воздействие волн давления на здания и сооружения, в т.ч. для учета гибели и травмирования людей, находящихся в этих зданиях и сооружениях.
 
Пункт 12. В зоне возможного воспламенения облака выделяются области видов 1 - 4. При отсутствии данных об источниках воспламенения облаков ТВС такие источники учитываются в центре каждой области загромождения. Взрыв ТВС моделируется от каждого источника воспламенения отдельно.
 
Пункт 13. С целью расчета последствий взрыва допускается упрощенное представление распределения концентраций горючего в облаках ТВС внутри областей видов видов 1 - 4 как равномерно распределенного по области горючего в стехиометрической концентрации.
 
Пункт 14. При отсутствии данных о вероятности появления источников воспламенения облаков ТВС допускается принимать их равновероятными.
 
Также добавлены пункты 17 и 21 , касающиеся параметрической модели оценки последствий аварийных взрывов ТВС.
 
Пункт 8 старого Руководства  в новом Руководстве представлен несколькими пунктами(18.,18.1,18.2,18.3,18.4,18.5,18.6,18.7,18.8,18.9).

В новом Руководстве более детально освещаются  алгоритмы расчета последствий аварийных взрывов ТВС:
 
Было Стало
8. В качестве основных структурных элементов алгоритма расчета последствий аварийных взрывов ТВС (рисунок 1 приложения N 3 к настоящему Руководству по безопасности) рекомендуется рассматривать:
определение массы горючего вещества, содержащегося в облаке ТВС;
определение эффективного энергозапаса ТВС;
определение ожидаемого режима взрывного превращения ТВС;
расчет максимального избыточного давления и импульса фазы сжатия воздушных ударных волн для различных режимов;
определение дополнительных характеристик взрывной нагрузки;
оценку поражающего воздействия взрыва ТВС.
 
18. В случае если в облаке реализуется не детонационный, а дефлаграционный режим энерговыделения, то для оценки последствий можно использовать более точный подход. Этот подход исходит из тех соображений, что при дефлаграционном горении с переменной скоростью за генерацию ударных волн отвечает дефлаграционное горение с наибольшей скоростью, последующее же сгорание облака с более низкой скоростью не вносит в уже сгенерированные волны давления существенного вклада. Это означает, что если в облаке существует область с высокой скоростью горения (в силу высокой загроможденности пространства) и граничащая с ней область с невысокой скоростью горения, то процесс будет развиваться следующим образом: при сгорании части облака с высокой скоростью генерируется волна давления, после же перехода горения в слабозагроможденную область пространства и сброса скорости горения генерация волны давления становится пренебрежимой по сравнению с предыдущей стадией горения. При этом однако надо учитывать возможность нового ускорения пламени, если оно вновь переходит в область с высокой загроможденностью, что может способствовать усилению волн давления. Таким образом, оценку последствий аварийных взрывов ТВС можно проводить, учитывая только сгорание объемов при высокой скорости дефлаграции. В этом случае для более точных оценок последствий аварийных взрывов ТВС можно использовать алгоритм расчета последствий аварийных взрывов ТВС, который включает следующие этапы:
18.1. Определение области возможных взрывов ТВС путем расчета зоны, в которой возможны появления концентрации не ниже НКПР, в заданных условиях аварии.
18.2. Определение ожидаемого режима взрывного превращения ТВС для каждой области загромождения. Если для какого-либо объема реализуется детонационный режим взрывного превращения, то при оценке последствий этот режим рассматривается как единственный для всего облака в целом.
18.3. Выделение в области возможных взрывов ТВС областей загроможденное 1 - 3 видов (для выделения таких областей рекомендуется использовать прямоугольные параллелепипеды). При этом, если области загромождения 1 - 3 вида разделены областями 4 вида, то эти области могут рассматриваться отдельно только в случае, если:
имеет место только дефлаграция (если в облаке имеет место детонация, то области отдельно рассматриваться не должны);
минимальное расстояние между областями загромождения 1 - 3 больше предельно допустимой величины, определяемой на основе характерного размера соответствующей области.
Под характерным размером загроможденной области Lзагр подразумевается ее максимальная протяженность по длине или высоте, или ширине. Области объединяются, если расстояние между объемами меньше k0Lзагр,
где k0 = 0,5, если избыточное давление, возникающее при взрыве в рассматриваемой загроможденной области, больше 100 кПа;
k0 = 0,25, если избыточное давление, возникающее при взрыве в рассматриваемой загроможденной области, меньше 10 кПа;
k0 линейно интерполируется между 0,25 и 0,5 в остальных случаях.
Вид загромождения для объединенной области определяется по наибольшему среди объединяемых областей. Таким образом, для одного дрейфующего облака решается в общем случае несколько задач о взрывах различных частей облака. При этом итоговая опасность оценивается по уровню воздействия от каждого взрыва, но не менее уровня воздействия взрыва всего дрейфующего облака при условии его расположения в пространстве вида 4.
18.4. Определение масс горючего вещества, содержащегося в облаке ТВС в концентрационных пределах воспламенения, в каждой области загромождения (в т.ч. в полученных путем объединения областей).
18.5. Определение эффективного энергозапаса ТВС для каждой области загромождения (в т.ч. в полученных путем объединения областей).
18.6. Определение отдельно центра взрыва как центра масс для каждой области загромождения (в т.ч. в полученной путем объединения нескольких областей).
18.7. Расчет максимального избыточного давления и импульса фазы сжатия воздушных ударных волн для каждой области загромождения отдельно (в т.ч. в полученных путем объединения областей).
18.8. Определение дополнительных характеристик взрывной нагрузки.
18.9. Оценка поражающего воздействия от различных вариантов взрывов ТВС.
 
 
Изменен 24 пункт (пункт 15 старой версии) Руководства, который содержит рекомендации по определению скорости взрывного превращения облака ТВС:
 
Было Стало
15. Ожидаемый диапазон скорости взрывного превращения определяется с помощью таблицы N 2 приложения N 3 к настоящему Руководству по безопасности в зависимости от класса горючего вещества и вида окружающего пространства. Допускается использование более точных значений скорости взрывного превращения при их обосновании. 24. Ожидаемый диапазон скорости взрывного превращения при типовых источниках воспламенения (искры, открытые пламена, разряды статического электричества, нагретые поверхности) определяется с помощью таблицы N 2 приложения N 3 к Руководству в зависимости от класса горючего вещества и вида окружающего пространства. Если в качестве источника воспламенения облака ТВС выступает внутренний взрыв в здании/помещении, куда произошла инфильтрация ТВС из облака, на пути которого находятся эти здания/сооружения, то ожидаемый диапазон скорости взрывного превращения уменьшается на 1 (мощность взрывного превращения повышается на 1 уровень) Допускается использование более точных значений скорости взрывного превращения при их обосновании. В случае если согласно пункту 18.3 проводится объединение нескольких областей пространства и проводятся предварительные расчеты для каждой отдельной области на соответствие критерию ее возможного объединения с другими областями, то для каждой отдельной области определяется соответствующий ей ожидаемый режим взрывного превращения.
 
В новом Руководстве появились рекомендации по одномерному газодинамическому моделированию, которое могут быть использованы при расчете взрывов ТВС. Эта информация представлена пунктами 44,45,46 (новой версии).
 
В новом Руководстве отсутствует содержание некоторых пунктов старого Руководства:

35 пункта (старой версии), в котором говорится о роли поражающих факторов при взрыве ТВС, для оценки уровня разрушения промышленных зданий;

36-37 пункты (старой версии),которые касаются оценки вероятности повреждений промышленных зданий от взрыва облака ТВС; 38-41 пункты(старой версии),содержащие способы оценки вероятности поражения людей при взрывах ТВС;

42-44 пункты(старой версии),которые содержат способы оценки радиусов зон поражения при взрывах ТВС.

Приложения к руководству претерпели некоторые изменения:

В Приложении 2 появились новые термины и определения.

Приложение 3 теперь представлено двумя таблицами: «Классификация горючих веществ по степени чувствительности» и «Экспертная таблица для определения режима взрывного превращения», а также в нем, как и в предыдущей версии, представлены примеры расчетов последствий аварийных взрывов топливно-воздушных смесей.  
 
 

Остались вопросы? Получите консультацию эксперта по телефону +7 (999) 333-79-61 или электронной почте expert@mtk-exp.ru